
Introduc)on	to	cache	a.acks		

Yuval	Yarom	

	

Summer	School	on	Real-World	
Crypto	and	Privacy	

	

6	June	2017	

	

1	

Publica@ons	on	Cache	ACacks	

Data	from	[GYCH16]	
2	

Some	Targets	

3	

• AES	
- Osvik,	Shamir	and	Tromer,	CT-RSA	2006	
- Gullasch,	Bangerter	and	Krenn,	IEEE	S&P	2011	
- Irazoqui,	Inci,	Eisenbarth	and	Sunar,	RAID	2014	

• ElGamal	
- Zhang,	Juels,	Reiter	and	Ristenpart,	CCS	2012	
- Liu,	Yarom,	Ge,	Heiser	and	Lee,	IEEE	S&P	2015	

• RSA	
- Percival,	2005	
- Yarom	and	Falkner	USENIX	Security	2014	
- Bernstein,	Genkin,	Groot	Bruinderink,	Heninger,	
Lange,	van	Vredendaal	and	Yarom,	CHES	2017	

• BLISS	
- Groot	Bruinderink,	Hülsing,	Lange	and	Yarom,	
CHES	2016	

- Pessl,	Groot	Bruinderink	and	Yarom,	ePrint	
2017/490	

Some	Targets	

4	

• DSA	/	ECDSA	
- Benger,	van	de	Pol,	Smart	and	Yarom,	CHES	2014	
- Pereida,	Brumley	and	Yarom,	CCS	2016	
- Pereida	and	Brumley,	USENIX	Security	2017	

• ECDH	on	Curve25519	
- Genkin,	Valenta	and	Yarom,	2017	(in	submission)	

Hot	Research	Area	

Data	from	[GYCH16]	
5	

Causes	Global	Warning	

6	

CPU	vs.	Memory	

7	

Processor	
Speed	

1	MHz	

8*2600	MHz	

Memory	
Latency	

500	ns	

63	ns	

Bridging	the	gap	

Cache	u@lises	locality	to	
bridge	the	gap	

• Divides	memory	into	lines	

• Stores	recently	used	lines	

• In	a	cache	hit,	data	is	
retrieved	from	the	cache	

• In	a	cache	miss,	data	is	
retrieved	from	memory	and	
inserted	to	the	cache	

Processor	

Memory	

Cache	

8	

Set	Associa@ve	Caches	

• Memory	lines	map	to	cache	
sets.	Mul@ple	lines	map	to	
the	same	set.	

• Sets	consist	of	ways.	A	
memory	line	can	be	stored	
in	any	of	the	ways	of	the	
set	it	maps	to.	

• When	a	cache	miss	occurs,	
one	of	the	lines	in	the	set	is	
evicted.	

Memory	
9	

Ways	

Sets	

The	Prime+Probe	ACack	[Per05,	OST06]	

• Allocate	a	cache-sized	
memory	buffer	

• Prime:	fills	the	cache	with	
the	contents	of	the	buffer	

• Probe:	measure	the	@me	
to	access	each	cache	set	

– Slow	access	indicates	
vic@m	access	to	the	set	

Memory	
10	

Implementa@on	Problems	

• The	observer	effect	

– The	spy	also	modifies	the	state	of	the	cache	

– Cache	thrashing	

• Op@mising	compiler	

– Tries	to	mask	memory	latency	

– Delete	dead	code	

• Hardware	op@misa@ons	

– Prefetch	data	predicted	to	be	needed	soon	

11	

Sample	Vic@m:	Data	RaCle	

12	

Mas@k	
• A	side	channel	toolkit	

• Implements	6	aCack	techniques	(more	to	
follow)	
– Almost	zero	documenta@on,	liCle	tes@ng	

• Both	API	and	command	line	u@li@es	

• Available	at		
	hCp://cs.adelaide.edu.au/~yval/Mas@k/	

13	

Demo	

L1-Data	RaCle	

14	

The	RSA	Encryp@on	System	
• The	RSA	encryp@on	is	a	public	key	
cryptographic	scheme	

15	

C = Me mod N

M

CM = Cd mod N

Key	Genera@on:	
• Select	random	primes	p	and	q
• Calculate	N = pq
• Select	a	public	exponent	e(=65537)
• Compute	d=e-1 mod φ(N)
• (N, e) is	the	public	key	
• (p, q, d)	is	the	private	key	

GnuPG	1.4.13	Decryp@on	

x ⟵1
for i ⟵|d|-1 downto 0 do
 x ⟵x2 mod n
 if (di =1) then
 x = xC mod n
 endif
done
return x

16	

Example:		
115	mod	100	=		
	 	161,051	mod	100	=	51	

Opera)on	 x i di

1	 2	 101	

Square	 1	 2	 101	

reduce	 1	 2	 101	

Mul@ply	 11	 2	 101	

reduce	 11	 2	 101	

Square	 121	 1	 101	

reduce	 21	 1	 101	

Square	 441	 0	 101	

reduce	 41	 0	 101	

Mul@ply	 451	 0	 101	

reduce	 51	 0	 101	

The	private	
key	is	

encoded	in	
the	sequence	
of	opera)ons	

!!!	

Demo	

ACacking	GnuPG	

17	

Limita@ons	
• Vic@m	and	spy	run	on	the	same	core	

– Easy	to	mi@gate	in	the	opera@ng	system	

18	

Core 0

Thread 0

L2 (unified)

 256 KB

Thread 1

L1 Inst

32 KB

L1 Data

32 KB

L3 (unified) - 4MB

Core 1

Thread 2

L2 (unified)

 256 KB

Thread 3

L1 Inst

32 KB

L1 Data

32 KB

The	FLUSH+RELOAD	Technique	

• Leaks	informa@on	on	vic@m	access	to	shared	
memory.	

• Spy	monitors	vic@m’s	access	to	shared	code	

– Spy	can	determine	what	vic@m	does	

– Spy	can	infer	the	data	the	vic@m	operates	on	

19	

Data	(copied)	

Data	(copied)	

Code	(shared)	

Code	(shared)	

Code	 Data	

Code	Sharing	

• To	reduce	its	memory	footprint,	the	
opera@ng	system	shares	code	between	
processes	

20	

Program	file:	

Process	A	

Process	B	

and	
data	

Some	other	
code	

Data	(copied)	Code	(shared)	

Code	mapped	
	as	data	

Code	 Data	

Code	is	Data	

• In	Von	Neumann	architectures	code	is	a	type	
of	data	

21	

Program	file:	

Process	A	

Process	B	

Cache	Consistency	

• Memory	and	cache	can	be	
in	inconsistent	states	

– Rare,	but	possible	

• Solu@on:	Flushing	the	
cache	contents	

– Ensures	that	the	next	load	is	
served	from	the	memory	

Processor	

Memory	

Cache	

22	

FLUSH+RELOAD	[GBK11,YF14]	

• FLUSH	memory	line	

• Wait	a	bit	

• Measure	@me	to	RELOAD	
line	

– slow->	no	access	

– fast->	access	

• Repeat	

Processor	

Memory	

Cache	

23	

Demo	

ACacking	GnuPG	1.4.13	

24	

Limita@ons	

• Requires	shared	memory	

– Easy	to	mi@gate	in	virtualised	environment	

• Modern	hypervisors	do	not	share	across	VMs	

– Harder	to	mi@gate	within	the	opera@ng	system	or	
in	PaaS	plasorm	

• Cannot	monitor	access	to	data	

25	

Prime+Probe	on	the	Last	Level	Cache	

• Some	technical	challenges	
– See	Liu	et	al.	IEEE	S&P	2015	

– Or	just	use	Mas@k	
26	

Core 0

Thread 0

L2 (unified)

 256 KB

Thread 1

L1 Inst

32 KB

L1 Data

32 KB

L3 (unified) - 4MB

Core 1

Thread 2

L2 (unified)

 256 KB

Thread 3

L1 Inst

32 KB

L1 Data

32 KB

Countermeasures	-	Hardware	

• Re-design	the	cache	

– Random	replacement	

– Cache	par@@oning	

• Don't	hold	your	breath…	

27	

Countermeasures	-	System	

• Detec@on	

– May	be	circumvented	

• Preven@on	

– All	suggested	methods	have	subtle	limita@ons	

28	

Countermeasures	-	Sovware	

• Blinding	

– Not	always	applicable	

– Not	always	work	

• Constant-@me	programming	

– Fragile	

29	

Summary	

• Cache	aCacks	are	a	threat	to	security	

– Mul@ple	ciphers	

– Mul@ple	system	models	

• (Almost)	easy	to	mount	

– Mas@k	

• Hard	to	mi@gate	

– No	silver	bullet	

	

30	

